The effects of interactive mechanical and biochemical niche signaling on osteogenic differentiation of adipose-derived stem cells using combinatorial hydrogels.

نویسندگان

  • Michelle Nii
  • Janice H Lai
  • Michael Keeney
  • Li-Hsin Han
  • Anthony Behn
  • Galym Imanbayev
  • Fan Yang
چکیده

Stem cells reside in a multi-factorial environment containing biochemical and mechanical signals. Changing biochemical signals in most scaffolds often leads to simultaneous changes in mechanical properties, which makes it difficult to elucidate the complex interplay between niche cues. Combinatorial studies on cell-material interactions have emerged as a tool to facilitate analyses of stem cell responses to various niche cues, but most studies to date have been performed on two-dimensional environments. Here we developed three-dimensional combinatorial hydrogels with independent control of biochemical and mechanical properties to facilitate analysis of interactive biochemical and mechanical signaling on adipose-derived stem cell osteogenesis in three dimensions. Our results suggest that scaffold biochemical and mechanical signals synergize only at specific combinations to promote bone differentiation. Leading compositions were identified to have intermediate stiffness (∼55kPa) and low concentration of fibronectin (10μg ml(-1)), which led to an increase in osteocalcin gene expression of over 130-fold. Our results suggest that scaffolds with independently tunable niche cues could provide a powerful tool for conducting mechanistic studies to decipher how complex niche cues regulate stem cell fate in three dimensions, and facilitate rapid identification of optimal niche cues that promote desirable cellular processes or tissue regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the effects of extremely low-frequency Electromagnetic field and Betaine on in vitro osteogenic differentiation of human adipose tissue derived-mesenchymal stem cells

Background & Aim: Extremely low-frequency electromagnetic field (ELF-EMF) and betaine are safe factors in bone fracture repair. This study aimed to compare the effects of these two stimuli on osteogenic differentiation of human adipose stem cells (hADSCs). Methods: After obtaining written informed consent, cells were extracted from abdominal adipose tissue and then cultured in vitro until the ...

متن کامل

The effects of cinnamaldehyde and eugenol on human adipose-derived mesenchymal stem cells viability, growth and differentiation: a cheminformatics and in vitro study

Objective: The aim of this study was to estimate the cheminformatics and qualitative structure-activity relationship (QSAR) of cinnamaldehyde and eugenol. The effects of cinnamaldehyde and eugenol on the viability, doubling time and adipogenic or osteogenic differentiations of human adipose-derived mesenchymal stem cells (hASCs) were also investigated.  Materials and Methods: QSAR and toxicity ...

متن کامل

Osteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model

BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

The Effect of Human Platelet-Rich Plasma on Adipose-Derived Stem Cell Proliferation and Osteogenic Differentiation

Background: The cultured mesenchymal stem cells (MSC) have been used in many clinical trials however, there are still some concerns about the cultural conditions. One concern is related to the use of FBS as a widely used xenogeneic supplement in the culture system. Human platelet-rich plasma (hPRP) is a candidate replacement for FBS. In this study, the effect of hPRP on MSC proliferation and os...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2013